
Jonathan Bailey

Optimising Erasure Coding:
The testing that makes us

confident

2

Unit Tests
Teuthology Testing

Performance Testing
Ceph IO Sequence Exerciser

How did we test optimised erasure coding?

3

Unit Tests
Teuthology Testing

Performance Testing
Ceph IO Sequence Exerciser

How did we test optimised erasure coding?

4

Why create a new tool?

5

Why create a new tool?

• Explicitly test and stress Erasure Coding Boundary Cases
• Adapt tests for specific Erasure Coding properties

o Plugin and technique
o k+m
o Chunk size
o Shards/missing shards

Shard 1 Shard 2 Shard 3

Full stripe write

6

Difficult IOs for Erasure Coding

Shard 1 Shard 2 Shard 3

Shard 1 Shard 2 Shard 3

Shard 1 Shard 2 Shard 3

Non-whole shard lengths

Crossing shard boundaries

Writes that do not include all shards

Shard 1 Shard 2 Shard 3

Multiple overlapping writes

Shard 1 Shard 2 Shard 3

Crossing stripe boundaries

7

Ceph IO Sequence Exerciser Aims

• Aims:
o Reproducability of tests while also varied
o Runs IO Sequences specifically designed to stress erasure coding

An addition to the suite of applications for Ceph test, allowing targeted
testing of erasure coding specifically.

8

How does the tool work?

9

● Data Generation
● Error injects
● IO Sequences

How does this tool work?

10

• Random data from seed
• Generated in “blocks”

o User specified OR
o From a pre-determined list of interesting values

• Data chunks have headers
o Application ID
o Seed
o Time

• Recalculates data from seed on each
read

Data Generation

Header: <Application ID><Seed><Time>

Random Data:
6AEB931B58CFFA67B8A289DDF5F76

210E51FCE66D2D23DE31CAF8A1101

E78A2A1F49291220220651462DAE9

9D7FA0D74B47CE5536ED239DA29ED

1489F11A97100620256BF2A13FC87

017E327AB2CA13C960FEC72998C1C

089250C5462A9593A9A64848A127D

CEBE111A2B874576B7B3245981D8A

D2F230A9E4D08641045981D8A02F2

11

Error Injects

• Simulator errors
o Read Errors

▪ EIO returned during read from shard
▪ OSD missing during read

o Write Errors
▪ Write fails during write so write is rolled back and failed
▪ OSD assert during write

12

Sequence

• Sequence Generators create different patterns of IOs
o Operation Type (Create/Remove/Read/Write/Append/Truncate)
o Offset/Length
o Number of operations per IO
o Order of IOs to send
o blocksize IOs, which often is a divisor of the EC chunksize

13

Sequences: Sequence 8

Object

Read IO

Write IO

Sequence desc:
Permutations of
offset 3-region
single read/write
I/O operations.

Select operations from
7th iteration of sequence 8.

1) Write 3 ranges -> Read all

2) Write 3 ranges -> Read all

3) Write 3 ranges -> Read all

4) Write 3 ranges -> Read all

5) Write 3 ranges -> Read all

6) Write 3 ranges -> Read all

7) Write 3 ranges -> Read all

8) Write 3 ranges -> Read all

9) Write 3 ranges -> Read all

14

Sequences: Sequence 10

Object

Read IO

Write IO

Sequential writes
of fixed length,
first doing a roll
back and check,
then doing a
write.

Create object

Inject error

Write block that will be rolled back

Read block

Clear inject

Write block

Read block

Inject error

Write block that will be rolled back

Read block

Clear inject

Write block

Read block

15

Sequences: Sequence 13

Object

Read IO

Write IO

Permutations of
length sequential
gap+append I/O

Create object

Write data after object

Write data after object

Write data after object

Read all

Create object

Write data after object

Write data after object

Write data after object

Read all

16

Additional useful features

• Parameters
o --threads
o --parallel
o --pool
o --verbose
o --interactive

Example invocations:
• ./ceph_test_rados_io_sequence

• ./ceph_test_rados_io_sequence --km 2,2 --plugin isa

• ./ceph_test_rados_io_sequence --blocksize 2048 --chunksize 4096 --km 4,2

 --plugin isa --technique cauchy --objectsize 2,32 --threads 2 --parallel 4

--verbose

17

Additional useful features

Interactive mode

Operations
• create <len>
• read|write|failedwrite <off> <len>
• read2|write2|failedwrite2 <off> <len> <off> <len>
• read3|write3|failedwrite3 <off> <len> <off> <len> <off> <len>
• Injecterror <inject_type> <type> <shard> <good_count> <fail_count>
• clearinject <inject_type> <type> <shard>
• append <length>
• truncate <size>
• remove
• sleep <duration>

Allows manual recreation of scenarios

18

Future work

• Integrate the tool to run as a part of the Teuthology suite
• Add epoch change listener for

o Crash detection
o Verification of epoch changes in recovery tests

• Plan and add testing verifying snapshots
• User control of object deletion after test execution

Code can be found in the main Ceph repository:
https://github.com/ceph/ceph/tree/main/src/test/osd/ceph_test_rados_io_sequence
https://github.com/ceph/ceph/tree/main/src/common/io_exerciser

For contact/questions, you can reach me at:
Jonathan.bailey1@ibm.com

https://github.com/ceph/ceph/tree/main/src/test/osd/ceph_test_rados_io_sequence
https://github.com/ceph/ceph/tree/main/src/common/io_exerciser
mailto:Jonathan.bailey1@ibm.com

19 Jonathan Bailey

Thank you

	Slide 1: Jonathan Bailey
	Slide 2: How did we test optimised erasure coding?
	Slide 3: How did we test optimised erasure coding?
	Slide 4: Why create a new tool?
	Slide 5: Why create a new tool?
	Slide 6: Difficult IOs for Erasure Coding
	Slide 7: Ceph IO Sequence Exerciser Aims
	Slide 8: How does the tool work?
	Slide 9: How does this tool work?
	Slide 10: Data Generation
	Slide 11: Error Injects
	Slide 12: Sequence
	Slide 13: Sequences: Sequence 8
	Slide 14: Sequences: Sequence 10
	Slide 15: Sequences: Sequence 13
	Slide 16: Additional useful features
	Slide 17: Additional useful features
	Slide 18: Future work
	Slide 19: Jonathan Bailey

